Аубекеров Д.


Задача №1.  Докажите, что для неотрицательных чисел $x$, $y$, $z$, удовлетворяющих условию $xy+yz+zx=3$, верно неравенство \[\left( {{x^2} + 3} \right)\left( {{y^2} + 3} \right)\left( {{z^2} + 3} \right) \geqslant 21\left( {x + y + z} \right) + 1.\] ( Аубекеров Д. )
комментарий/решение(1) олимпиада