Д. Ширяев


Задача №1.  $D$ и $E$ — такие точки описанной окружности остроугольного треугольника $ABC$, что $AD=AE$. Пусть $H$ — точка пересечения высот треугольника $ABC$. Известно, что $AH^2=BH^2+CH^2$. Докажите, что точка $H$ лежит на отрезке $DE$. ( Д. Ширяев )
комментарий/решение олимпиада
Задача №2.  В треугольнике $ABC$ точка $M$ — середина стороны $AB$, точка $O$ — центр описанной окружности. Оказалось, что $R-r=OM$. Биссектриса внешнего угла при вершине $A$ пересекает прямую $BC$ в точке $D$, а биссектриса внешнего угла при вершине $C$ пересекает прямую $AB$ в точке $E$. Найдите все возможные значения угла $CED$. ( Д. Ширяев )
комментарий/решение олимпиада
Задача №3.  Продолжение биссектрисы $CL$ треугольника $ABC$ пересекает описанную окружность треугольника в точке $K$. Точка $I$ — центр вписанной окружности. Оказалось, что $IL=LK$. Докажите, что $CI=IK$. ( Д. Ширяев )
комментарий/решение(1) олимпиада