Азиатско-Тихоокеанская математическая олимпиада, 2010 год


Пусть $ABC$ — остроугольный треугольник, в котором $AB > BC$ и $AC > BC$. Обозначим через $O$ и $H$ центр описанной окружности и ортоцентр треугольника $ABC$, соответственно. Предположим, что описанная окружность треугольника $AHC$ пересекает прямую $AB$ в точке $M$, отличной от $A$, а описанная окружность треугольника $AHB$ пересекает прямую $AC$ в точке $N$, также отличной от $A$. Докажите, что центр описанной окружности треугольника $MNH$ лежит на прямой $OH$. ( А. Баев )
посмотреть в олимпиаде

Комментарий/решение: