Математикадан облыстық олимпиада, 2009-2010 оқу жылы, 9 сынып


$\angle A =2\angle B$ қатынасы орындалатындай $ABC$ үшбұрышы үшін $a^2=b(b+c)$ теңдігін дәлелдеңіздер, мұндағы $a, b, c$ — сәйкесінше $BC, CA, AB$ қабырғаларының ұзындықтары.
посмотреть в олимпиаде

Комментарий/решение:

пред. Правка 2   1
2019-01-12 01:20:18.0 #

Проведя биссектрису $AL$ получаем подобие треугольников $ABC,ALC$ откуда $ \dfrac{a}{c} = \dfrac{b}{BL}$(1) учитывая теорему о биссектрисе $\dfrac{BL}{a-BL} = \frac{c}{b}$ откуда $BL = \frac{ac}{b+c}$ подставляя в $(1)$ следует $a^2=b(b+c)$.

  2
2021-12-22 20:31:25.0 #

Пусть $\angle ABC=\alpha$ и $\angle BAC=2 \alpha$. Продолжим BA до точки F так чтобы AF=FC. Выходит треугольник AFC равнобедренный и $\angle FAC=180-2\alpha$ $\angle AFC=2\alpha$. Выходит BFC тоже равнобедренный и BC=FC=a. Также треугольники FAC и FCB подобный по двум углам. Из этого подобия следует что AF/FC=FC/BF=b/a=a/(b+c). Умножаем и получаем $a^{2}=b(b+c)$ .

  0
2021-12-22 20:44:28.0 #

Должно быть $AF=AC$ и $\angle AFC=\alpha$

  0
2022-01-13 19:48:13.0 #

Ой. Извиняюсь