Олимпиада имени Леонарда Эйлера
2013-2014 учебный год, I тур заключительного этапа


Задача №1. Докажите, что в разложение произведения десяти последовательных трёхзначных чисел на простые множители входит не больше 23 различных простых чисел. ( И. Рубанов )
комментарий/решение(1)
Задача №2.  На стороне $AB$ треугольника $ABC$ с углом в $100 ^\circ$ при вершине $C$ взяты точки $P$ и $Q$ такие, что $AP = BC$ и $BQ = AC$. Пусть $M$, $N$, $K$ — середины отрезков $AB$, $CP$, $CQ$ соответственно. Найдите угол $NMK$. ( М. Кунгожин, Методическая комиссия Эйлера )
комментарий/решение(1)
Задача №3.  На сотом году правления Казначей Бессмертный решил начать выпускать новые монеты. В этом году он выпустил в обращение неограниченный запас монет достоинством $2^{100} -1$, на следующий год — достоинством $2^{101} -1$, и т.д. Как только достоинство очередной новой монеты можно будет без сдачи набрать выпущенными ранее новыми монетами, Казначея сместят. На каком году его правления это случится? ( И. Богданов )
комментарий/решение(1)
Задача №4.  Среди 49 одинаковых на вид монет — 25 настоящих и 24 фальшивых. Для определения фальшивых монет имеется тестер. В него можно положить любое количество монет, и если среди этих монет больше половины — фальшивые, тестер подает сигнал. Как за пять тестов найти две фальшивых монеты? ( К. Кноп )
комментарий/решение(1)
результаты