34-я Международная Математическая Oлимпиада
Турция, Стамбул, 1993 год


Пусть $f\left( x \right)={{x}^{n}}+5{{x}^{n-1}}+3$, где $n > 1$ — целое число. Доказать, что $f\left( x \right)$ нельзя представить в виде произведения двух многочленов положительной степени с целыми коэффициентами.
посмотреть в олимпиаде

Комментарий/решение:

  0
2021-05-01 01:31:06.0 #

$x^n+5x^{n-1}+3$ возможно по критерию Эйзенштейна, $a_{1}=1$ делиться на $p=5$ простое, $a_{2}=5$ делится на $5$ , но $3^2$ не делится на $5$ значит он не разложим на произведения двух многочленов.