К. Тыщук


Задача №1.  На плоскости даны две точки $A$ и $B$. Назовём точку $X$ их нелепой серединой, если на плоскости существует такая декартова система координат, что точки $A$ и $B$ имеют в ней неотрицательные координаты, причем абсцисса точки $X$ в этой системе равна среднему геометрическому абсцисс точек $A$ и $B$, а ордината — среднему геометрическому ординат $A$ и $B$. Найдите геометрическое место всех нелепых середин точек $A$ и $B$. ( К. Тыщук )
комментарий/решение олимпиада