М. Кунгожин


Задача №1.  В равнобедренном треугольнике $ABC$ точка $H$ — середина основания $AB$, $M$ — середина отрезка $BH$. Пусть $HK$ — высота треугольника $ACH$, а прямые $CM$ и $BK$ пересекаются в точке $L$. Перпендикуляр к прямой $BC$ в точке $B$ и прямая $LH$ пересекаются в точке $N$. Докажите, что угол $BCN$ в два раза меньше угла $ACB.$ ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №2.  Вписанная окружность треугольника $ABC$ касается сторон $BC$ и $AC$ в точках $A_1$ и $B_1$, а вневписанная окружность, соответствующая стороне $AB$, касается продолжении этих сторон в точках $A_2$ и $B_2$ соответственно. Пусть вписанная в $\triangle ABC$ окружность касается стороны $AB$ в точке $K$. Обозначим через $O_a$ и $O_b$ центры описанных около треугольников $A_1A_2K$ и $B_1B_2K$ окружностей. Докажите, что прямая $O_aO_b$ проходит через середину отрезка $AB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №3.  Вокруг треугольника $ABC$ описана окружность $\omega$, а $I$ — точка пересечения биссектрис этого треугольника. Прямая $CI$ пересекает $\omega$ вторично в точке $P$. Пусть окружность с диаметром $IP$ пересекает $AI$, $BI$ и $\omega$ вторично в точках $M$, $N$ и $K$ соответственно. Отрезки $KN$ и $AB$ пересекаются в точке $B_1$, а отрезки $KM$ и $AB$ — в точке $A_1$. Докажите, что $\angle ACB = \angle A_1IB_1$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №4.  В треугольнике $ABC$ из наибольшего угла $C$ проведена высота $CH$. Отрезки $HM$ и $HN$ — высоты треугольников $ACH$ и $BCH$ соответственно, а $HP$ и $HQ$ — биссектрисы треугольников $AMH$ и $BNH$. Пусть точка $R$ — основание перпендикуляра из точки $H$ на прямую $PQ$. Докажите, что $R$ — точка пересечения биссектрис треугольника $MNH$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №5.  Вокруг треугольника $ABC$ описана окружность $\omega$, а $I$ — точка пересечения биссектрис этого треугольника. Прямая $CI$ пересекает $\omega$ вторично в точке $P$. Пусть окружность с диаметром $IP$ пересекает $AI$, $BI$ и $\omega$ вторично в точках $M$, $N$ и $K$ соответственно. Отрезки $KN$ и $AB$ пересекаются в точке $B_1$, а отрезки $KM$ и $AB$ — в точке $A_1$. Докажите, что $\angle ACB = \angle A_1IB_1$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №6.  В треугольнике $ABC$ точка $N$ — основание биссектрисы угла $C$, точка $M$ — середина стороны $AB$, а $\omega$ — описанная около него окружность. Прямая $CN$ во второй раз пересекает $\omega$ в точке $D$. На отрезках $AD$ и $BD$ взяты точки $K$ и $L$ соответственно, так, что $\angle ACK=\angle BCL$. Пусть описанные окружности треугольников $ACK$ и $BCL$ во второй раз пересекаются в точке $P$, а $Q$ — точка пересечения прямых $DM$ и $ KL$. Докажите, что точки $M,N,P, Q$ лежат на одной окружности. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №7.  Дан выпуклый четырехугольник $ABCD$. Точки $K$ и $M$ — середины сторон $BC$ и $AD$ соответственно. Отрезки $AK$ и $BM$ пересекаются в точке $N$, а отрезки $KD$ и $CM$ — в точке $ L$. Оказалось, что полученный четырехугольник $KLMN$ — вписанный. Пусть описанные окружности треугольников $BNK$ и $AMN$ во второй раз пересекаются в точке $Q$, а описанные окружности треугольников $KLC$ и $DML$ — в точке $P$. Докажите, что у четырехугольников $KLMN$ и $KPMQ$ площади равны. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №8.  Даны две окружности $\omega_1$ и $\omega_2$, отрезки $AB$ и $CD$ — общие внешние касательные к ним (точки $A$ и $C$ лежат на $\omega_1$, а точки $B$ и $D$ — на $\omega_2$). Прямая $AD$ во второй раз пересекает окружность $\omega_1$ в точке $P$, а окружность $\omega_2$ в точке — $Q$. Пусть касательная к $\omega_1$ в точке $P$ пересекает $AB$ в точке $R$, а касательная к $\omega_2$ в точке $Q$ пересекает $CD$ в точке $S$. $M$ — середина отрезка $RS$. Докажите, что $MP=MQ$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №9.  Окружность $\omega$, описанная около треугольника $ABC$, пересекает стороны $AD$ и $DC$, параллелограмма $ABCD$, во второй раз в точках $A_1$ и $C_1$ соответственно. Обозначим через $E$ точку пересечения прямых $AC$ и $A_1C_1$. Пусть $BF$ — диаметр $\omega$, а точка $O_1$ симметрична центру $\omega$ относительно $AC$. Докажите, что прямые $FO_1$ и $DE$ перпендикулярны. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №10.  В треугольнике $ABC$ точка $N$ — основание биссектрисы угла $B$, а точка $M$ — середина стороны $AC$. На отрезке $BN$ нашлись точки $A_1$ и $C_1$ такие, что $NA=NA_1$ и $NC=NC_1$. Прямые $AA_1$ и $CC_1$ пересекаются в точке $E$. Прямая $ME$ пересекает отрезок $BC$ в точке $F$. Докажите равенство $AB+BF=CF$. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №11.  Вписанная и вневписанная окружности прямоугольного треугольника $ABC$, в котором угол $C$ прямой, касаются стороны $BC$ в точках $A_1$ и $A_2$ соответственно. Аналогично определим точки ${{B}_{1}}$ и ${{B}_{2}}$. Докажите, что отрезки ${{A}_{1}}{{B}_{2}}$ и ${{B}_{1}}{{A}_{2}}$ пересекаются на высоте проведённой из вершины $C$ треугольника $ABC$. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №12.  В неравнобедренном треугольнике $ABC$ вписанная окружность касается сторон $AB$ и $BC$ в точках $C_1$ и $A_1$ соответственно, а вневписанная окружность (касающаяся стороны $AC$) — соответственно в точках $C_2$ и $A_2$. Точка $N$ — основание биссектрисы из вершины $B$. Прямая $A_1C_1$ пересекают прямую $AC$ в точке $K_1$. Пусть описанная окружности треугольника $BK_1N$ повторно пересекают описанную окружность треугольника $ABC$ в точке $P_1$. Аналогично определим точки $K_2$ и $P_2$. Докажите, что $AP_1 = CP_2$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №13.  Около неравнобедренного треугольника $ABC$ описана окружность $\omega$, точка $M$ — середина $AC$. Касательная к $\omega$ в точке $B$ пересекает прямую $AC$ в точке $N$, а прямая $BM$ повторно пересекает $\omega$ в точке $L$. Пусть точка $P$ симметрична точке $L$ относительно $M$. Окружность, описанная около треугольника $BPN$, повторно пересекает прямую $AN$ в точке $Q$. Докажите, что $\angle ABP = \angle QBC$. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №14.  Дан треугольник $ABC$, около которого описана окружность $\omega$. Точки $D$ и $D_1$, лежащие на прямой $AC$, симметричны друг другу относительно середины $AC$. Пусть $BD$ и $BD_1$ во второй раз пересекают $\omega$ в точках $E$ и $E_1$, соответственно. Докажите, что все такие прямые $EE_1$ проходят через фиксированную точку плоскости. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №15.  В выпуклом четырёхугольнике $ABCD$ справедливы следующие соотношения: $AB=BC$, $AD=BD$ и $\angle ADB = 2 \angle BDC$. Известно, что $\angle ACD = 100^\circ$. Найдите $\angle ADC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №16.  Дан треугольник $ABC$. Пусть вписанная в него окружность касается сторон $AB$, $BC$ и $AC$ в точках $C_1$, $A_1$ и $B_1$ соответственно. Известно, что выполняется равенство $1/AC_1 + 1/BC_1 = 2/CA_1$. Докажите, что отрезок $CC_1$ делится вписанной окружностью в отношении $1:2$ считая от вершины $C$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №17.  Дан треугольник $ABC$, около которого описана окружность с центром $O$. Пусть $I$ — центр вписанной окружности треугольника $ABC$, а точки $A_1$ ($A\neq A_1$) и $B_1$ ($B\neq B_1$) на описанной окружности такие, что угол $\angle IA_1B=\angle IA_1C$ и $\angle IB_1A=\angle IB_1C$. Докажите, что прямые $AA_1$ и $BB_1$ пересекаются на прямой $OI$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №18.  Дан треугольник $ABC$. Пусть вписанная в него окружность касается сторон $AB$, $BC$ и $AC$ в точках $C_1$, $A_1$ и $B_1$ соответственно. Известно, что выполняется равенство $1/AC_1 + 1/BC_1 = 2/CA_1$. Докажите, что отрезок $CC_1$ делится вписанной окружностью в отношении $1:2$ считая от вершины $C$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №19.  Пусть диагонали вписанного выпуклого четырехугольника $ABCD$ пересекаются в точке $P$, а продолжение противоположных сторон $AB$ и $CD$ в точке $K$. Точки $M$ и $N$ на сторонах $AB$ и $CD$ соответственно такие, что выполняется равенство $AM/MB = CN/ND$. Пусть $MN$ пересекает диагонали $ABCD$ в точках $Q$ и $R$. Докажите, что описанные окружности треугольников $PRQ$ и $KMN$ касаются, причем в фиксированной точке плоскости. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №20.  Дан треугольник $ABC$, около которого описана окружность с центром $O$. Пусть $I$ — центр вписанной окружности треугольника $ABC$, а точки $A_1$ ($A\neq A_1$) и $B_1$ ($B\neq B_1$) на описанной окружности такие, что угол $\angle IA_1B=\angle IA_1C$ и $\angle IB_1A=\angle IB_1C$. Докажите, что прямые $AA_1$ и $BB_1$ пересекаются на прямой $OI$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №21.  Пусть $\omega$ — описанная окружность треугольника $ABC$ с тупым углом $C$ а $C'$ симметричная точка точке $C$ относительно $AB$. $M$ — середина $AB$. $C'M$ пересекает $\omega$ в точке $N$ ($C'$ между $M$ и $N$). Пусть $BC'$ вторично пересекает $\omega$ в точке $F$, а $AC'$ вторично пересекает $w$ в точке $E$. $K$ — середина $EF$. Докажите что прямые $AB$, $CN$ и $KC'$ пересекаются в одной точке. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №22.  Для неотрицательных чисел $x$, $y$ докажите неравенство $$\sqrt{x^{2}-x+1}\sqrt{y^{2}-y+1}+\sqrt{x^{2}+x+1}\sqrt{y^{2}+y+1}\geq 2(x+y).$$ ( М. Кунгожин )
комментарий/решение олимпиада
Задача №23.  Вокруг остроугольного треугольника $ABC$ ($AC>CB$) описана окружность, а точка $N$ — середина дуги $ACB$ этой окружности. Пусть точки $A_1$ и $B_1$ — основания перпендикуляров на прямую $NC$, проведенные из точек $A$ и $B$ соответственно (отрезок $NC$ лежит внутри отрезка $A_1B_1$). Высота $A_1A_2$ треугольника $A_1AC$ и высота $B_1B_2$ треугольника $B_1BC$ пересекаются в точке $K$. Докажите, что $\angle A_1KN=\angle B_1KM$, где $M$ — середина отрезка $A_2B_2$. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №24.  Касательные в точках $A$ и $B$ к окружности $\omega$, описанной около остроугольного неравнобедренного треугольника $ABC$, пересекаются в точке $S$. Пусть $M$ — середина стороны $AB$, а $H$ — точка пересечения высот треугольника $ABC$. Прямая $HA$ пересекает прямые $CM$ и $CS$ в точках $M_a$ и $S_a$ соответственно. Аналогично определены точки $M_b$ и $S_b$. Докажите, что $M_a S_b$ и $M_b S_a$ — высоты треугольника $M_a M_b H$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №25.  Окружность с центром $I$, вписанная в треугольник $ABC$, касается сторон $BC$ и $AC$ в точках $A_1$ и $B_1$, соответственно. На лучах $A_1I$ и $B_1I$, соответственно, взяты точки $A_2$ и $B_2$ такие, что $IA_2=IB_2=R$, где $R$ — радиус описанной окружности треугольника $ABC$. Докажите, что
a) $AA_2 = BB_2 = OI$, где $O$ — центр описанной окружности треугольника $ABC$;
b) прямые $AA_2$ и $BB_2$ пересекаются на описанной окружности треугольника $ABC$. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №26.  Окружности $\omega$ и $\Omega$ пересекаются в точках $A$ и $B$. Пусть $M$ — середина дуги $AB$ окружности $\omega$ ($M$ лежит внутри $\Omega$). Хорда $MP$ окружности $\omega$ пересекает $\Omega$ в точке $Q$ ($Q$ лежит внутри $\omega$). Пусть $\ell_P$ — касательная к окружности $\omega$ в точке $P$, а $\ell_Q$ — касательная к окружности $\Omega$ в точке $Q$. Докажите, что окружность, описанная около треугольника, образованного при пересечении прямых $\ell_P$, $\ell_Q$ и $AB$, касается $\Omega$. ( М. Кунгожин, И. Богданов )
комментарий/решение(1) олимпиада
Задача №27.  На стороне $AB$ треугольника $ABC$ с углом в $100 ^\circ$ при вершине $C$ взяты точки $P$ и $Q$ такие, что $AP = BC$ и $BQ = AC$. Пусть $M$, $N$, $K$ — середины отрезков $AB$, $CP$, $CQ$ соответственно. Найдите угол $NMK$. ( М. Кунгожин, Методическая комиссия Эйлера )
комментарий/решение(1) олимпиада
Задача №28.  В треугольнике $ABC$ проведены высоты $AD$ и $BE$. Биссектриса угла $BEC$ пересекает прямую $AD$ в точке $M$, а биссектриса угла $ADC$ пересекает $BE$ в точке $N$. Докажите, что $MN \parallel AB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №29. В остроугольном неравнобедренном треугольнике $ABC$ точка $H$ — его ортоцентр, $M$ — середина $AB$, $N$ — середина $CH$. Пусть прямые $AN$ и $CM$ пересеклись в точке $L$. Доказать, что $\angle L{{A}_{1}}C =\angle ABH$, где ${{A}_{1}}$ — основание высоты из вершины $A$ треугольника $ABC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №30. Окружность $\omega$ описана около четырехугольника $ABCD$. Прямые $AB$ и $CD$ пересекаются в точке $K$, а прямые $AD$ и $BC$ — в точке $L$. Прямая, проходящая через центр окружности $\omega$ и перпендикулярная $KL$, пересекает прямые $KL$, $CD$ и $AD$ в точках $P$, $Q$ и $R$ соответственно. Докажите, что прямые $QL$, $BP$ и $KR$ пересекаются в одной точке. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №31.  В треугольнике $ABC$ проведена биссектриса $BK$. Касательная в точке $K$ к окружности $\omega$, описанной около треугольника $ABK$, пересекает сторону $BC$ в точке $L$. Прямая $AL$ пересекает $\omega$ в точке $M$. Докажите, что прямая $BM$ проходит через середину отрезка $ KL$. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №32.  Дан произвольный квадратный трехчлен $f$ с действительными коэффициентами. Существуют ли числа $({{x}_{1}},{{x}_{2}},\ldots ,{{x}_{n}})$ — последовательные члены арифметической прогрессии такие, что все члены набора $F=\{f({{x}_{1}}),f({{x}_{2}}),\ldots ,f({{x}_{n}})\}$ в каком-то порядке также являются последовательными членами арифметической прогрессии (с ненулевыми разностями) если: а) $n=3$; б) $n=4$? ( М. Кунгожин )
комментарий/решение олимпиада
Задача №33.  К окружности $\omega $ с центром $O$ из точки $S$ проведены касательные $SA$ и $SB$. Точки $C$ и $C'$ на окружности $\omega $ такие, что $AC \parallel OB$ и $CC'$ является диаметром $\omega $. Пусть прямые $BC$ и $SA$ пересекаются в точке $K$, а прямые $KC'$ и $AC$ в точке $M$. Докажите, что в треугольнике $MKC$ высота из вершины $M$ делит высоту из вершины $C$ пополам, если угол $BMK$ прямой. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №34.  На координатной плоскости $xOy$ нарисована парабола $y={{x}^{2}}$. Пусть $A$, $B$ и $C$ различные точки этой параболы. Определим точку ${{A}_{1}}$, как точку пересечения прямой $BC$ и оси $Oy$. Аналогично определим точки ${{B}_{1}}$ и ${{C}_{1}}$. Доказать, что сумма расстоянии от точек $A$, $B$ и $C$ до оси $Ox$ больше суммы расстоянии от точек ${{A}_{1}}$, ${{B}_{1}}$ и ${{C}_{1}}$ до оси $Ox$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №35.  В равнобедренном треугольнике $ABC$ $(BC=AC)$ на биссектрисе $BN$ нашлась точка $K$ такая, что $BK=KC$ и $KN=NA$. Найдите углы треугольника $ABC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №36.  Пусть дано натуральное число $n$, а $m$ — целое число из множества $\{0,\text{ }1,\text{ }...\text{ },\text{ }{{n}^{2}}-1\}$ такое, что число ${{x}^{n}}+{{y}^{n}}-m$ не делится на ${{n}^{2}}$ ни при каких целых $x$ и $y$. Докажите, что количество таких $m$ не меньше $\frac{n(n-1)}{2}$. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №37.  Неравнобедренный остроугольный треугольник $ABC$ вписан в окружность $\omega $. Пусть $H$ — точка пересечения высот этого треугольника, а $M$ — середина стороны $AB$. На дуге $AB$ окружности $\omega $, не содержащей точку $C$, взяты точки $P$ и $Q$ такие, что $\angle ACP=\angle BCQ<\angle ACQ$. Пусть $R$ и $S$ — основания перпендикуляров, опущенных из точки $H$ на прямые $CQ$ и $CP$ соответственно. Докажите, что точки $P$, $Q$, $R$ и $S$ лежат на одной окружности, а точка $M$ является центром этой окружности. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №38.  На сторонах треугольника $ABC$ во внешнюю сторону построены прямоугольники равных площадей $ABLK$, $BCNM$ и $CAQP$. Пусть $X$, $Y$ и $Z$ середины отрезков $KQ$, $LM$ и $NP$ соответственно. Докажите, что прямые $AX$, $BY$ и $CZ$ пересекаются в одной точке. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №39.  Неравнобедренный треугольник $ABC$ вписан в окружность $\omega$ с центром $O$. Продолжение биссектрисы $CN$ пересекает $\omega$ в точке $M$. Пусть $MK$ — высота треугольника $BCM$, $P$ — середина отрезка $CM$, а $Q$ — точка пересечения прямых $OP$ и $AB$. Пусть прямая $MQ$ во второй раз пересекает $\omega$ в точке $R$, а $T$ — точка пересечения прямых $BR$ и $MK$. Докажите, что $NT \parallel PK$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №40. Остроугольный треугольник $ABC$ $(AC > BC)$ вписан в окружность с центром в точке $O$, а $CD$ — диаметр этой окружности. На продолжении луча $DA$ за точку $A$ взята точка $K$, а на отрезке $BD$ точка $L$ $(DL > LB)$ так, что $\angle OKD = \angle BAC$, $\angle OLD = \angle ABC$. Докажите, что прямая $KL$ проходит через середину отрезка $AB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №41.  Неравнобедренный треугольник $ABC$ вписан в окружность $\omega$. Касательная к этой окружности в точке $C$ пересекает прямую $AB$ в точке $D$. Пусть биссектриса угла $CDB$ пересекает отрезки $AC$ и $BC$ в точках $K$ и $L$ соответственно. На стороне $AB$ взята точка $M$ такая, что $AK/BL=AM/BM$. Пусть перпендикуляры из точки $M$ к прямым $KL$ и $DC$ пересекают прямые $AC$ и $DC$ в точках $P$ и $Q$ соответственно. Докажите, что угол $CQP$ в два раза меньше угла $ACB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №42.  Остроугольный треугольник $ABC$ $(AC > BC)$ вписан в окружность с центром в точке $O$, а $CD$ — диаметр этой окружности. На продолжении луча $DA$ за точку $A$ взята точка $K$, а на отрезке $BD$ точка $L$ $(DL > LB)$ так, что $\angle OKD = \angle BAC$, $\angle OLD = \angle ABC$. Докажите, что прямая $KL$ проходит через середину отрезка $AB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №43.  Дан неравнобедренный треугольник $ABC$. Точки $K$ и $N$ лежат на стороне $AC$, а точки $M$ и $L$ на стороне $BC$ так, что $AN=CK=CL=BM.$ Пусть отрезки $KL$ и $MN$ пересекаются в точке $P$. Докажите, что $\angle RPN = \angle QPK$, где $R$ — середина стороны $AB$, а $Q$ — середина дуги $ACB$ окружности, описанной около треугольника $ABC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №44.  Дан треугольник $ABC$. На стороне $AB$ взята точка $K$, а на стороне $AC$ взята точка $L$ таким образом, что $\angle ACB+\angle AKL=50{}^\circ $ и $\angle ABC+\angle ALK=70{}^\circ $. Чему может равняться угол $BAC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №45.  В равнобедренном прямоугольном треугольнике $ABC$ на катетах $AC$ и $BC$ взяты соответственно точки $K$ и $L$ так, что $AK/KC=4/1$ и $CL/BL=3/2$. Пусть $KML$ также равнобедренный прямоугольный треугольник, а $O$ — середина его гипотенузы $MK$. Докажите, что точка $O$ лежит на внешней или на внутренней биссектрисе угла $ACB$. ( М. Кунгожин )
комментарий/решение(3) олимпиада
Задача №46.  К окружности с центром в точке $O$ из точки $S$ проведены касательные $SA$ и $SB$. На окружности выбрана точка $C$, отличная от точки $A$, таким образом, что прямые $AC$ и $SO$ параллельны. Докажите, что точка $O$ лежит на прямой $BC$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №47.  Натуральное число $n$ при делении на 3 дает остаток 1, а также количество его различных натуральных делителей, дающие при делении на 3 остаток 1, нечетно. Приведите пример такого числа $n$, у которого не менее 2017 различных натуральных делителей. ( М. Кунгожин )
комментарий/решение олимпиада
Задача №48.  Даны $R$ и $r$ — радиусы описанной и вписанной окружностей треугольника $ABC$, а $I$ — центр вписанной окружности. Определим точку ${{A}_{1}}$ как точку, симметричную точке $I$ относительно серединного перпендикуляра отрезка $BC$. Аналогично определим точки ${{B}_{1}}$ и ${{C}_{1}}$. Докажите, что треугольники $ABC$ и ${{A}_{1}}{{B}_{1}}{{C}_{1}}$ подобны, и найдите коэффициент подобия. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №49.  К окружности с центром в точке $O$ из точки $A$ проведена касательная $AB$. Точка $C$ лежит на окружности, отлична от точки $B$ и $AO\parallel BC$. Пусть $ABCD$ параллелограмм, и $M$ — точка пересечения его диагоналей. Докажите, что $AB=2MO$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №50.  Пусть ${{a}_{1}},{{a}_{2}},\ldots ,{{a}_{10}}$ — перестановка цифр $0,1,\ldots ,9$ и $M=\left( {{a}_{1}}+{{a}_{2}}+\ldots +{{a}_{5}} \right)\left( {{a}_{6}}+{{a}_{7}}+\ldots +{{a}_{10}} \right)$. Чему может равняться максимальное и минимальное значение $M$. Для каждого найденного ответа приведите пример. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №51.  Дан треугольник $ABC$ с углами $\angle A=40{}^\circ $ и $\angle B=80{}^\circ $. На отрезке $AB$ взяты точки $K$ и $L$ (точка $K$ лежит между точками $A$ и $L$) такие что $AK=BL$ и $\angle KCL=30{}^\circ $. Найдите угол $LCB$. ( М. Кунгожин )
комментарий/решение(1) олимпиада
Задача №52.  Известно, что для чисел $a,b,x,y$ выполнено неравенство ${{(ab)}^{3}}+{{(xy)}^{3}}\ge {{(ax)}^{3}}+{{(by)}^{3}}$. Докажите, что для этих же чисел выполнено неравенство $ab+xy\ge ax+by$. ( М. Кунгожин )
комментарий/решение(2) олимпиада
Задача №53.  На стороне $AB$ треугольника $ABC$ выбрана точка $K$. Продолжение стороны $AC$ (за точку $C$) и касательная из точки $K$ к вписанной окружности треугольника $ABC$ пересекаются в точке $N$. Проведена окружность $\omega$, касающаяся сторон $AC$, $AB$ и описанной окружности треугольника $AKN$. Доказать, что описанная окружность треугольника $ABC$ касается $\omega$. ( М. Кунгожин )
комментарий/решение олимпиада